

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 47 (2006) 6895-6898

Synthesis of oxepine-, oxocine- and azepine-annulated carbazole derivatives by combined Claisen rearrangement and diene/enyne metathesis

Shital K. Chattopadhyay,* Shankar P. Roy, Debalina Ghosh and Gautam Biswas

Department of Chemistry, University of Kalyani, Kalyani 741235, West Bengal, India

Received 4 April 2006; revised 27 June 2006; accepted 10 July 2006 Available online 4 August 2006

Abstract—A new route to various medium ring heterocycle-annulated tetra-, penta- and hexacyclic carbazole derivatives has been developed using successive applications of three atom economic processes, viz. Claisen rearrangement, olefin metathesis and Diels–Alder reactions.

© 2006 Elsevier Ltd. All rights reserved.

Various hetero-annulated carbazole derivatives have drawn considerable attention because of their natural occurrence and the broad spectrum of biological activity associated with these compounds.¹ Of particular interest have been the natural products² containing common heterocyclic rings such as furocarbazoles, pyranocarbazoles, pyrrolocarbazoles, indolocarbazoles, pyridocarbazoles and synthetic analogues³ thereof. A number of synthetic methodologies have emerged for their preparation.^{1a,2} On the other hand, medium ring oxaand azacycle-fused carbazole derivatives have largely remained unexplored which may, in part, be due to a lack of general methods⁴ for their synthesis. We have recently developed⁵ a methodology based on combined application of Claisen rearrangement and ring-closing diene metathesis for the synthesis of oxepine- and oxocine-annulated coumarin and quinolone derivatives. We have also recently reported⁶ the applications of domino Claisen rearrangement, enyne metathesis and Diels-Alder reactions leading to polycyclic coumarin frameworks. These methodologies have found applications⁷ in the synthesis of a range of interesting oxepine-annulated heterocyclic structures and hence we report some new observations.

Our synthesis started from the commercially available 2hydroxycarbazole 1 which on straightforward allylation under conventional conditions afforded O-allyl ether 2 (Scheme 1). Claisen rearrangement⁸ of 2 in refluxing N,N-diethylaniline provided the known⁹ phenol 4 as the only regioisomer in very good yield. Further allylation of 4 with allyl bromide led to diene 6. A comparable sequence led to crotyl ether 3 and thence to diene 7 in an overall yield of 44% over three steps from 1. Ringclosing metathesis of each of the dienes 6 and 7 using Grubbs' catalyst, benzylidene bistricyclohexylphosphinoruthenium(IV) dichloride¹⁰ 8, under our developed^{5c} conditions led smoothly to the oxepinocarbazoles¹¹ 11 and 12, respectively, in very good yields. Similarly, butenyl ethers 9 and 10, derived from phenols 4 and 5, reacted with catalyst 8, albeit sluggishly, to provide oxocinocarbazoles 13 and 14 in good yields.

We then became interested in extending the study for the synthesis of azepine-annulated carbazoles. Thus, phenol **4** was converted to its methyl ether **15** which on further alkylation with allyl bromide under the usual conditions led to *N*-alkylcarbazole **17**. Similarly, compound **18** was prepared by two sequential alkylations of **5**. Ring-closing metathesis of dienes with one alkene unit linked to nitrogen can be problematic¹² because the basic nitrogen atom deactivates the carbene catalyst, however, exceptions do exist.¹³ We had doubts whether dienes¹⁴ **17** and **18** would undergo effective RCM. Pleasingly, the reaction of diene **17** with catalyst **8** proved to be easy and an efficient conversion to the desired carbazole

Keywords: Claisen rearrangement; Ring-closing metathesis; Enyne metathesis; Carbazole; Oxepine; Diels–Alder reaction.

^{*} Corresponding author. Tel.: +91 33 25828750; fax: +91 33 25828282; e-mail: skchatto@yahoo.com

^{0040-4039/\$ -} see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.07.045

Scheme 1. Reagents and conditions: (i) allyl bromide, K_2CO_3 , acetone, reflux, 18 h; (ii) PhNEt₂, reflux, 5 h; (iii) allyl bromide or 4-bromo-1-butene, K_2CO_3 , acetone, reflux, 24 h; (iv) Grubbs' catalyst 8 (5 mol %), CH_2Cl_2 , rt, 2–4 h for 11 and 12, 24 h for 13 and 14.

derivative 19 was secured. Similarly, the conversion $18 \rightarrow 20$ proceeded without difficulty thereby indicating that the carbazole ring-nitrogen atom, although not basic, is well tolerated by the Grubbs' first generation catalyst (see Scheme 2).

2,5-Pyrrolidinedione-appended polycyclic carbazole derivatives such as staurosporine, rebeccamycin, granul-

atimide, UCN-01 and synthetic analogues thereof are of interest¹⁵ because of their biological activity. Development of routes to this type of ring system is therefore of significance. We prepared the enyne derivative **21** (Scheme 3) by straightforward propargylation of phenol **4**. Ring-closing enyne metathesis¹⁶ using catalyst **8** provided diene **22** in good yield. In Diels–Alder cycloadditions of vinylcycloalkenes, *endo–exo* stereoselectivity is

Scheme 2. Reagents and conditions: (i) MeI, K₂CO₃, acetone, reflux, 12 h; (ii) NaH, allyl bromide, DMF, 0 °C to rt, 18 h; (iii) Grubbs' catalyst 8 (5 mol %), CH₂Cl₂, rt, 5 h for 17, 11 h for 18.

Scheme 3. Reagents and conditions: (i) propargyl bromide, K_2CO_3 , acetone, reflux, 4 h, 83%; (ii) Grubbs' catalyst 8 (5 mol %), CH₂Cl₂, rt, 24 h, 67%; (iii) *N*-phenylmaleimide, toluene, 95 °C, 24 h; (iv) 1,4-naphthoquinone, toluene, 95 °C, 24 h.

highly variable. With vinylcyclohexenes, both modes of cycloaddition have been observed.¹⁷ On the other hand, we have recently observed⁶ that Diels–Alder cycloaddition with coumarin-annulated vinyloxepines led only to *endo* products. However, when diene **22** was refluxed with *N*-phenylmaleimide two products were formed in a ratio \sim 3:2. The major product was assigned¹⁸ the *endo* stereochemistry, **23**, mp 120 °C, while the other product appeared to be the *exo*-adduct **24**. Similarly, cycloaddition of diene **22** with 1,4-naphthoquinone proceeded to give a separable mixture of the major product **25** and its *exo* isomer in a combined yield of 66%.

In summary, we have demonstrated that various oxepine- and azepine-annulated polycyclic carbazole frameworks¹⁹ can be conveniently prepared by successive applications of three atom economic processes, viz. Claisen rearrangement, ring-closing diene/enyne metathesis and Diels–Alder reactions. The stereodivergence observed during the Diels–Alder reaction of diene **22** is noteworthy. The methodology developed may prove to be helpful for the preparation of other carbazole derivatives of similar complexity. The compounds prepared may prove to be useful in biological applications.

Acknowledgements

We are thankful to DST, Government of India (Grant No. SR/S1/OC-51) (New Delhi), for financial support and UGC and CSIR (New Delhi) for fellowships. Spectroscopic help from Professor G. Pattenden, Nottingham University, is gratefully acknowledged.

References and notes

- For reviews and monographs, see: (a) Knölker, H.-J. Top. Curr. Chem. 2005, 244, 115–148; (b) Gallagher, P. T. In Science of Synthesis (Houben-Weyl); Thomas, E. J., Ed.; Thieme: Stuttgart, 2001; Vol. 10, pp 693–744; (c) Moody, C. J. Synlett 1994, 681–688; (d) Bhattacharyya, P.; Chakraborty, D. P. In Progress in the Chemistry of Organic Natural Products; Herz, W., Griesebach, H., Kirby, G. W., Eds.; Springer: Wien, 1987; Vol. 52, pp 159– 209; (e) Joule, J. A. Adv. Heterocycl. Chem. 1984, 35, 83– 198.
- For a review, see: Knölker, H.-J.; Reddy, K. R. Chem. Rev. 2002, 102, 4303–4427.
- 3. For a review, see: Kirsch, G. H. Curr. Org. Chem. 2001, 5, 507–518.
- For reviews, see: (a) Yet, L. Chem. Rev. 2000, 100, 2963– 3008; (b) Hoberg, J. O. Tetrahedron 1998, 54, 12631– 12670.
- (a) Chattopadhyay, S. K.; Maity, S.; Panja, S. *Tetrahedron Lett.* 2002, 43, 7781–7783; (b) Chattopadhyay, S. K.; Paul, B. K.; Maity, S. *Chem. Lett.* 2003, 32, 1190–1191; (c) Chattopadhyay, S. K.; Dey, R.; Biswas, S. *Synthesis* 2005, 403–406.
- Chattopadhyay, S. K.; Biswas, T.; Neogi, K. Chem. Lett. 2006, 35, 376–377.
- (a) Pain, C.; Celanire, S.; Guillaument, G.; Joseph, B. Synlett 2003, 2089–2091; (b) Kotha, S.; Mandal, K. Tetrahedron Lett. 2004, 45, 2585–2588; (c) Kotha, S.; Mandal, K. Tetrahedron Lett. 2004, 45, 1391–1394; (d) Majumdar, K. C.; Rahaman, H.; Islam, R.; Roy, B.

Tetrahedron Lett. **2006**, *47*, 2111–2113; (e) Majumdar, K. C.; Rahaman, H.; Muhuri, S.; Roy, B. *Synlett* **2006**, 466–468.

- For a recent review, see: Castro, A. M. M. Chem. Rev. 2004, 104, 2939–3002.
- 9. Ishihara, T.; Kakuta, H.; Moritani, H.; Ugawa, T.; Yanagisawa, I. *Bioorg. Med. Chem.* 2004, *12*, 5899–5908.
- Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1996, 118, 100–110.
- For another route to oxepinocarbazoles, see: Chakraborty, A.; Chakraborty, D. P. *Tetrahedron Lett.* 1988, 29, 6625–6627.
- 12. Martin, S. F.; Deiters, A. Chem. Rev. 2004, 104, 2199-2238.
- For a recent example, see: Cren, S.; Wilson, C.; Thomas, N. R. Org. Lett. 2005, 7, 3521–3523.
- For recent examples of azacycle formation by olefin metathesis, see: (a) Barberis, M.; Garcia-Losada, P.; Pleite, S.; Rodriguez, J. R.; Soriano, J. F.; Mendiola, J. *Tetrahedron Lett.* 2005, 46, 4847–4850; (b) Appukkuttan, P.; Dehaen, W.; Van der Eycken, E. Org. Lett. 2005, 7, 2723–2726; (c) Gracias, V.; Gasiecki, A. F.; Djuric, S. W. Org. Lett. 2005, 7, 3183–3186, and references cited therein.
- (a) Prudhomme, M. *Curr. Med. Chem.* 2000, *7*, 1189–1212;
 (b) Jackson, J. R.; Gilmartin, A.; Imburgia, C.; Winkler, J. D.; Marshall, L. A.; Roshak, A. *Cancer. Res.* 2000, *60*, 566–572;
 (c) Zhou, B.-B. S.; Bartek, J. *Nature Rev. Cancer* 2004, *4*, 216–225.
- For reviews, see: (a) Poulsen, C. S.; Madsen, R. Synthesis 2003, 1–18; (b) Diver, S. T.; Giessert, A. J. Chem. Rev. 2004, 104, 1317–1382; For some recent applications, see: (c) Clark, J. S.; Elustondo, F. Chem. Commun. 2004, 2470– 2471; (d) Giessert, A. J.; Diver, S. T. J. Org. Chem. 2005, 70, 1046–1049; (e) Gracias, V.; Gasiecki, A. F.; Djuric, S. W. Tetrahedron Lett. 2005, 46, 9049–9052; (f) Gonzalez-Gomez, A.; Dominguez, G.; Perez-Castells, J. Tetrahedron Lett. 2005, 46, 7267–7270.
- (a) Rossilo, M.; Domniguez, G.; Casarrubios, L.; Amador, U.; Perez-Castells, J. J. Org. Chem. 2004, 69, 2084–2093; (b) Ge, M.; Stoltz, B. M.; Corey, E. J. Org. Lett. 2000, 2, 1927–1929; (c) Yoon, T.; Danishefsky, S. J.; de Gala, S. Angew. Chem., Int. Ed. Engl. 1994, 33, 853–855.
- 18. The structural assignments were based on the data obtained from ¹H, ¹³NMR, COSY, DEPT and HMBC experiments on compounds 23 and 24.
- 19. All new compounds reported here gave satisfactory spectroscopic and/or analytical data. Data for 11: mp 154 °C. IR (KBr) 3314, 1607, 1462, 1430, 1207, 1057, 1021 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 8.02 (1H, d, J = 7.5), 7.95 (1H, br s), 7.86 (1H, d, J = 8.0), 7.43 (1H, td, J = 8.0, 1.1), 7.38 (1H, td, J = 7.0, 1.0), 7.23 (1H, td, J = 7.0, 1.5, 7.01 (1H, d, J = 8.5), 5.97–5.92 (1H, m), 5.65–5.61 (1H, m), 4.65 (2H, d, J = 2.0), 3.69 (2H, d, J = 2.4). ¹³C NMR (125 MHz, CDCl₃): δ 157.3 (s), 139.8 (s), 138.1 (s), 128.6 (d), 125.2 (d), 124.9 (d), 123.7 (s), 120.4 (s), 120.0 (d), 119.6 (d), 118.7 (d), 117.3 (s), 113.9 (d), 110.5 (d), 71.1 (t), 25.9 (t). HRMS (EI): obs. 235.098986; calcd. 235.099714. Compound 13: mp 116 °C. IR (KBr) 3296, 1607, 1462, 1427, 1324, 1221, 1206, 1050 cm⁻¹. ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3)$: δ 8.02 (1H, d, J = 7.5), 7.98 (1H, br s), 7.87 (1H, d, J = 8.0), 7.43 (1H, d, J = 8.0), 7.39 (1H, td, J = 8.5, 1.5, 7.22 (1H, td, J = 8.0, 1.1), 6.98 (1H, d, J = 8.1), 6.07 (1H, dt, J = 11.0, 7.0), 5.73–5.68 (1H, m), 4.15 (2H, t, J = 5.0), 3.66 (2H, d, J = 6.5), 2.42–2.38 (2H, m). ¹³C NMR (125 MHz, CDCl₃): δ 155.5 (s), 139.8 (s), 138.6 (s), 131.4 (d), 127.7 (d), 125.2 (d), 123.9 (s), 120.0 (s), 119.9 (d), 119.6 (d), 118.8 (d), 118.5 (s), 114.9 (d), 110.5 (d), 73.7 (t), 27.9 (t), 26.4 (t). Mass (EI, 70 eV): m/z 249 (100%), 220 (48%). Compound 19: mp 114 °C. IR (KBr)

2930, 1624, 1598, 1460, 1350, 1243, 1217 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 7.96 (1H, d, J = 7.5), 7.83 (1H, d, J = 8.7), 7.41–7.33 (2H, m), 7.16–7.13 (1H, m), 6.83 (1H, d, J = 8.4), 6.37 (1H, dt, J = 10.2, 6.9), 6.18 (1H, m), 4.93 (2H, d, J = 6.9), 3.89 (3H, s), 3.49 (2H, d, J = 6.6). ¹³C NMR (75 MHz, CDCl₃): δ 154.6 (s), 141.4 (s), 140.8 (s), 134.4 (d), 125.3 (d), 124.9 (d), 122.4 (s), 119.5 (d), 118.6 (d), 118.3 (d), 117.9 (s), 109.6 (s), 107.7 (d), 104.6 (d), 56.7 (q), 40.8 (t), 22.1 (t). Elemental analyses: C, 81.78%, H, 6.06%, N, 5.49%; C₁₇H₁₅NO requires C, 81.90%, H, 6.06%, N, 5.62%. Mass (TOF MS ES+): m/z 249 (M⁺). Compound **23**: mp 120 °C. IR (KBr) 3378, 1700, 1606, 1466, 1384, 1208 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 9.10 (1H, s), 7.96 (1H, d, J = 7.6), 7.82 (1H, d, J = 8.4),

7.56–7.52 (2H, m), 7.48–7.43 (2H, m), 7.36–7.29 (3H, m), 7.19 (1H, dt, J = 8.0, 1.2), 6.82 (1H, d, J = 8.4), 6.19–6.18 (1H, m), 5.27 (1H, td, J = 12.4, 1.2), 4.70 (1H, d, J = 12.4), 3.88 (1H, dd, J = 15.2, 4.0), 3.57 (1H, dd, J = 15.2, 4.4 Hz), 3.04 (1H, q, J = 9.2), 2.92–2.89 (1H, m), 2.78–2.70 (2H, m), 2.36 (1H, ddd, J = 14.4, 5.6, 2.8). ¹³C NMR (90 MHz, CDCl₃): δ 179.3 (s), 178.0 (s), 154.9 (s), 141.1 (s), 139.8 (s), 138.3 (s), 131.5 (d), 129.8 (s), 129.3 (d), 128.9 (d), 126.5 (d), 124.6 (d), 123.8 (s), 119.5 (s), 119.4 (s), 119.3 (d), 117.7 (d), 112.4 (d), 110.9 (d), 107.3 (d), 72.5 (t), 42.5 (t), 38.8 (d), 38.3 (d), 26.4 (d), 22.5 (t). Elemental analyses: C, 77.29%, H, 5.14%, N, 6.49%; C₂₈H₂₂N₂O₃ requires C, 77.40%, H, 5.10%, N, 6.45%. Mass (FAB): m/z434 (M⁺, 51%).